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Introduction

Killed stable process

Let Z = (Zt ,Px) be the isotropic 2α-stable process in Rd , α ∈ (0, 1),
(Qt)t≥0 the corresponding semigroup: Qt f (x) := Ex f (Zt) t ≥ 0,
f : Rd → R.

−(−∆)αf := lim
t→0

Qt f − f

t
is the fractional Laplacian.

For D ⊂ Rd open, let τD := inf{t > 0 : Zt /∈ D}, ZD
t := Zt if t < τD , ∂

(cemetary) otherwise, QD
t f (x) := Ex f (ZD

t ) = Ex(f (Zt), t < τD) the
corresponding semigroup.

L1f := lim
t→0

QD
t f − f

t

a possible definition of fractional Laplacian in D; usually called fractional
Laplacian in D with zero exterior condition. Notation: −(−∆)α∣∣D .
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Introduction

KSBM and SKBM

Let W = (Wt ,Px) be a Brownian motion in Rd , S = (St)t≥0 an
independent α-stable subordinator. Then WSt is a subordinate Brownian

motion and (Zt)
d
= (WSt ).

Hence, ZD is a killed subordinate Brownian motion (KSBM).

WD Brownian motion killed upon exiting D, Y D
t := WD

St
is a subordinate

killed Brownian motion (SKBM). If (PD
t )t≥0 is the semigroup of WD ,

then the infinitesimal generator of Y D is

L0f = −(−∆∣∣D)αf :=
1

|Γ(−α)|

∫ ∞
0

(PD
t f − f )t−α−1dt

Another possible definition of a fractional Laplacian in D: the fractional
power of Dirichlet Laplacian.

L0 6= L1

Zoran Vondraček (University of Zagreb) Potential theory of SKP July 17, 2018 5 / 34
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Introduction

If (Q̃D
t )t≥0 is the semigroup of Y D , then Q̃D

t f ≤ QD
t f , f ≥ 0. Y D is a

”smaller” process then ZD .

Let S be a β-stable subordinator, β ∈ (0, 1], T a γ-stable subordinator,
γ ∈ (0, 1), so that βγ = α. Let Zt = WSt be a SBM, ZD the KSBM, and
Y D
t = ZD

Tt
the subordinate killed Z .

Let (RD
t )t≥0 be the semigroup of Y D .

Then Q̃D
t f ≤ RD

t f ≤ QD
t f , f ≥ 0, and the infinitesimal generator of (RD

t )
can be written as

L = −((−∆)β|D)γ .

Since βγ = α, also a version of α-fractional Laplacian in D.

Goal: study potential theory of operators like L (i.e. potential theory of
Y D) and see how it depends on β and γ.

Zoran Vondraček (University of Zagreb) Potential theory of SKP July 17, 2018 6 / 34
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Zoran Vondraček (University of Zagreb) Potential theory of SKP July 17, 2018 7 / 34



Setting, assumptions and preliminaries

Setting

W = (Wt ,Px) Brownian motion in RD , d ≥ 3, D ⊂ Rd , a bounded open
subset.

S = (St)t≥0 a β-stable subordinator, β ∈ (0, 1], and T = (Tt)t≥0 a
γ-stable subordinator, γ ∈ (0, 1), with Laplace exponents φ and ψ,
independent and independent of W . Let α := βγ ∈ (0, 1).
Various processes:

Zt := WSt subordinate Brownian motion; BM or 2β-stable

Xt := ZTt = W(S◦T )t subordinate Z , twice SBM: 2α-stable

ZD killed Z , KSBM

XD killed X , KSBM

Y D
t := ZD

Tt
subordinate ZD , subordinate KSBM

Zoran Vondraček (University of Zagreb) Potential theory of SKP July 17, 2018 8 / 34
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Setting, assumptions and preliminaries

κ-fat and C 1,1-open sets

Let 0 < κ < 1. An open set D ⊂ Rd is said to be κ-fat if there is R1 > 0
such that for all x ∈ D and all r ∈ (0,R1], there is a ball
B(Ar (x), κr) ⊂ D ∩ B(x , r). The pair (R1, κ) is called the characteristics
of the κ-fat open set D.

Let U ⊂ Rd be an open set and let Q ∈ ∂U. We say that U is C 1,1 near
Q if there exist a localization radius R > 0, a C 1,1-function
ϕQ : Rd−1 → R satisfying ϕQ(0) = 0, ∇ϕQ(0) = (0, . . . , 0),
‖∇ϕQ‖∞ ≤ Λ, |∇ϕQ(z)−∇ϕQ(w)| ≤ Λ|z − w |, and an orthonormal
coordinate system CSQ with its origin at Q such that
B(Q,R) ∩ U = {y = (ỹ , yd) ∈ B(0,R) in CSQ : yd > ϕQ(ỹ)}
where ỹ := (y1, . . . , yd−1). The pair (R,Λ) is called the C 1,1

characteristics of U near Q. An open set U ⊂ Rd is said to be a (uniform)
C 1,1 open set with characteristics (R,Λ) if it is C 1,1 with characteristics
(R,Λ) near every boundary point Q ∈ ∂U.

Zoran Vondraček (University of Zagreb) Potential theory of SKP July 17, 2018 9 / 34
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Setting, assumptions and preliminaries

Transition densities of Z : p(t, x , y) = p(t, |x − y |) where

p(t, r) = (4πt)−d/2e−r
2/4t , St = t , (Z = W )

p(t, r) =

∫ ∞
0

(4πs)−d/2e−r
2/4sP(St ∈ ds) , otherwise.

Transition densities of ZD :

pD(t, x , y) = p(t, x , y)−Ex [p(t − τD ,ZτD , y), τD < t] , t > 0, x , y ∈ D .

Sharp two-sided estimates: (i) φ(λ) = λ (β = 1); for t ≤ T , x , y ∈ D,

pD(t, x , y) � Px(t < τWD )Py (t < τWD )t−d/2e−
c|x−y|2

t ,

pD(t, x , y) �
(
δD(x)

t1/2
∧ 1

)(
δD(y)

t1/2
∧ 1

)
t−d/2e−

c|x−y|2
t

Varopoulos 2003 (D Lipschitz), Zhang 2003, Song 2004 (D C 1,1)
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Zoran Vondraček (University of Zagreb) Potential theory of SKP July 17, 2018 10 / 34



Setting, assumptions and preliminaries

Transition densities of Z : p(t, x , y) = p(t, |x − y |) where

p(t, r) = (4πt)−d/2e−r
2/4t , St = t , (Z = W )

p(t, r) =

∫ ∞
0

(4πs)−d/2e−r
2/4sP(St ∈ ds) , otherwise.

Transition densities of ZD :

pD(t, x , y) = p(t, x , y)−Ex [p(t − τD ,ZτD , y), τD < t] , t > 0, x , y ∈ D .

Sharp two-sided estimates: (i) φ(λ) = λ (β = 1); for t ≤ T , x , y ∈ D,

pD(t, x , y) � Px(t < τWD )Py (t < τWD )t−d/2e−
c|x−y|2

t ,

pD(t, x , y) �
(
δD(x)

t1/2
∧ 1

)(
δD(y)

t1/2
∧ 1

)
t−d/2e−

c|x−y|2
t

Varopoulos 2003 (D Lipschitz), Zhang 2003, Song 2004 (D C 1,1)
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Setting, assumptions and preliminaries

(ii) t ≤ T , x , y ∈ D, D is κ-fat open set,

pD(t, x , y) � Px(t < τZt )Py (t < τZD )

(
t−d/2β ∧ t

|x − y |d+2β

)
.

D is C 1,1 open set, x , y ∈ D,

pD(t, x , y) �
(
δD(x)β

t1/2
∧ 1

)(
δD(y)β

t1/2
∧ 1

)
×
(
t−d/2β ∧ t

|x − y |d+2β

)
, t ≤ T ,

pD(t, x , y) � e−λ1tδD(x)βδD(y)β , t ≥ T .

Chen, Kim, Song 2010
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Setting, assumptions and preliminaries

Green function and jumping kernel

Green functions of Y D and X : For x , y ∈ D,

GY D
(x , y) =

∫ ∞
0

pD(t, x , y)v(t) dt ≤
∫ ∞

0
p(t, x , y)v(t) dt = GX (x , y) .

Here v(t) = tγ−1 is the potential density of (Tt).

Jumping kernels of of Y D and X : For x , y ∈ D,

JY
D

(x , y) =

∫ ∞
0

pD(t, x , y)ν(t) dt ≤
∫ ∞

0
p(t, x , y)ν(t) dt = JX (x , y) .

Here ν(t) = t−γ−1 is the Lévy density of (Tt).

Zoran Vondraček (University of Zagreb) Potential theory of SKP July 17, 2018 12 / 34
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Setting, assumptions and preliminaries

Harmonic functions

(Xt ,Px) a strong Markov process in a metric space X. A non-negative
u : X→ [0,∞) is harmonic in an open U ⊂ X (wrt the process X ) if

u(x) = Ex (u(XτB )) , for all bounded open B ⊂ U and for all x ∈ B.

A non-negative u : X→ [0,∞) is regular harmonic in an open U ⊂ X if

u(x) = Ex (u(XτD ), τU <∞) , for all x ∈ U.

By the strong Markov property, regular harmonic implies harmonic.

Harnack inequality: There exists C > 0 such that for every x0 ∈ X, every
r ∈ (0, 1] and every function u : X→ [0,∞) which is harmonic in B(x0, r)
with respect to X , it holds that

u(x) ≤ Cu(y) , x , y ∈ B(x0, r/2) .

C does not depend on r ∈ (0, 1] - scale invariant HI.
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Setting, assumptions and preliminaries

Boundary Harnack principle

BHP for X : Let U ⊂ X ⊂ Rd . There exists C > 0 such that for every
r ∈ (0, 1], every Q ∈ ∂U, any nonegative f and g on Rd which are regular
harmonic in U ∩ B(Q, r) and vanish on Uc ∩ B(Q, r),

f (x)

g(x)
≤ C

f (y)

g(y)
, x , y ∈ U ∩ B(Q, r/2).

BHP with explicit decay rate: When U is C 1,1, replace g with an explicit
function of δU(·).

For example, if X is Brownian motion, then f (x)
δU(x) ≤ C f (y)

δU(y) . If X is

isotropic 2α-stable, then f (x)
δU(x)α ≤ C f (y)

δU(y)α .
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Setting, assumptions and preliminaries

Harnack inequalities

Theorem: Suppose that D ⊂ Rd is a bounded κ-fat (Lipschitz when
β = 1) open set. There exists a constant C > 0 such that for any
r ∈ (0, 1] and B(x0, r) ⊂ D and any Borel function f which is
non-negative in D and harmonic in B(x0, r) with respect to Y D , we have

f (x) ≤ Cf (y), for all x , y ∈ B(x0, r/2).

Theorem: Suppose that D ⊂ Rd is a bounded κ-fat open set, β ∈ (0, 1).
There exists a constant C = C (β, γ, diam(D)) > 1 such that the following
is true: If L > 0 and x1, x2 ∈ D and r ∈ (0, 1) are such that |x1 − x2| < Lr
and B(x1, r) ∪ B(x2, r) ⊂ D, then for any Borel function f which is
non-negative in D and harmonic in B(x1, r)∪B(x2, r) with respect to Y D ,
we have

C−1(L ∨ 1)−d−βf (x2) ≤ f (x1) ≤ C (L ∨ 1)d+βf (x2).
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Setting, assumptions and preliminaries

One of the main ingredients of the proof is the following comparison of
jumping kernel.
Lemma: Suppose that D ⊂ Rd is a bounded κ-fat (Lipschitz when β = 1)
open set. For every ε0 ∈ (0, 1], there exists a constant C ≥ 1 such that for
all x0 ∈ D and all r ≤ 1 satisfying B(x0, (1 + ε0)r) ⊂ D, it holds that

JY
D

(z , x1) ≤ CJY
D

(z , x2) , x1, x2 ∈ B(x0, r), z ∈ D \ B(x0, (1 + ε0)r) .
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Setting, assumptions and preliminaries

Boundary Harnack principle in the interior of D

Theorem: Let D ⊂ Rd , d ≥ 3, be a bounded κ-fat (Lipschitz when β = 1)
open set. There exists a constant b = b(β, γ, d) > 2 such that, for every
open set E ⊂ D and every Q ∈ ∂E ∩ D such that E is C 1,1 near Q with
characteristics (δD(Q) ∧ 1,Λ), the following holds: There exists a constant
C = C (δD(Q) ∧ 1,Λ, ψ, φ, d) > 0 such that for every
r ≤ (δD(Q) ∧ 1)/(b + 2) and every non-negative function f on D which is
regular harmonic in E ∩ B(Q, r) with respect to Y D and vanishes on
E c ∩ B(Q, r), we have for x , y ∈ E ∩ B(Q, 2−6κ4

0r),

f (x)

δE (x)α
≤ C

f (y)

δE (y)α
,

where κ0 = (1 + (1 + Λ)2)−1/2.
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Boundary estimates
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Boundary estimates

Green function estimates in C 1,1-open set

From now on, D is a bounded C 1,1-open set in Rd , d ≥ 3.

Let

g(r) :=
1

rd−2α
, r > 0.

Note that g(|x − y |) is the Green function estimate for X .

Theorem: There exists a constant C ≥ 1 such that for all x , y ∈ D,

GY D
(x , y) �C

(
δD(x)β

|x − y |β
∧ 1

)(
δD(y)β

|x − y |β
∧ 1

)
g(|x − y |) .

The boundary behavior δD(x)β completely determined by φ (that is, β);
same as the one of ZD .
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Boundary estimates

Outline of the proof: With T = 2diam(D)2β, write

GY D
(x , y) =

∫ ∞
0

pD(t, x , y)v(t)dt =

∫ |x−y |2β
0

+

∫ T

|x−y |2β
+

∫ ∞
T
,

use sharp estimates of pD(t, x , y) and v(t) = tγ−1.

For the upper bound estimate all three integrals, for the lower only the
first which is the dominating term.
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Boundary estimates

Exit time estimates in C 1,1 domains

Recall that ExτD =
∫
D GY D

(x , y)dy (in fact, τD = ζ - the lifetime of Y D).

For killed processes like ZD (or XD), the asymptotics of ExτD as x → ∂D

is the same as the asymptotics of x 7→ GZD
(x , y). Somewhat surprisingly,

this need not be the case for Y D .

It holds that

ExτD �


δD(x)β, γ > 1/2,
δD(x)β log(1/δD(x)), γ = 1/2,
δD(x)2γβ, γ < 1/2 .

Zoran Vondraček (University of Zagreb) Potential theory of SKP July 17, 2018 21 / 34



Boundary estimates

Exit time estimates in C 1,1 domains

Recall that ExτD =
∫
D GY D

(x , y)dy (in fact, τD = ζ - the lifetime of Y D).
For killed processes like ZD (or XD), the asymptotics of ExτD as x → ∂D

is the same as the asymptotics of x 7→ GZD
(x , y).

Somewhat surprisingly,
this need not be the case for Y D .

It holds that

ExτD �


δD(x)β, γ > 1/2,
δD(x)β log(1/δD(x)), γ = 1/2,
δD(x)2γβ, γ < 1/2 .
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Zoran Vondraček (University of Zagreb) Potential theory of SKP July 17, 2018 21 / 34



Boundary estimates

Jumping kernel estimates in C 1,1-open sets

Let

j(r) :=
1

rd+2α
, r > 0.

Note that j(|x − y |) is the Lévy density estimate for X .

Theorem: Suppose φ(λ) = λ (that is β = 1). There exists a constant
C ≥ 1 such that for all x , y ∈ D,

JY
D

(x , y) �C

(
δD(x)

|x − y |
∧ 1

)(
δD(y)

|x − y |
∧ 1

)
j(|x − y |) .

Boundary behavior same as for the Green function. The proof similar, uses
JY

D
(x , y) =

∫∞
0 pD(t, x , y)t−γ−1dt ,
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Boundary estimates

Jumping kernel estimates in C 1,1-open sets (cont.)

Case φ(λ) 6= λ (that is β ∈ (0, 1)).

JY
D

(x , y) �



(
δD(x)∧δD(y))2β

|x−y |2β ∧ 1
)1−γ

1
|x−y |d+2γβ , γ > 1/2,

(
δD(x)∧δD(y))2β

|x−y |2β ∧ 1
)1/2

,

× log
(

1 + (δD(x)∨δD(y))2β∧|x−y |2β
(δD(x)∧δD(y))2β∧|x−y |2β

)
1

|x−y |d+β , γ = 1/2,

(
δD(x)∧δD(y))2β

|x−y |2β ∧ 1
)1/2

×
(

(δD(x)∨δD(y))2β

|x−y |2β ∧ 1
)

1
|x−y |d+2γβ , γ < 1/2 .
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Boundary estimates
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Boundary estimates

Example

Let ψ(λ) = λγ and assume that β ∈ (0, 1). Fix y ∈ D. As δD(x)→ 0, we
have

JY
D

(x , y) �c


δD(x)β, 0 < γ < 1/2,

δD(x)β log(1/δD(x)), γ = 1/2,

δD(x)β δD(x)β−2γβ = δD(x)2β(1−γ), 1/2 < γ < 1.

Note that the boundary behavior of JY
D

is determined by both β and γ.

In case φ(λ) = λ, in all three cases

JY
D

(x , y) �c δD(x) .
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Note that the boundary behavior of JY
D

is determined by both β and γ.

In case φ(λ) = λ, in all three cases

JY
D

(x , y) �c δD(x) .
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Boundary estimates

The proof of the theorem uses that

JY
D

(x , y) =

∫ ∞
0

pD(t, x , y)ν(t)dt ,

estimates of pD(t, x , y) and ν(t) = t−γ−1. The integral is split into three
parts: ∫ |x−y |2β

0
+

∫ T

|x−y |2β
+

∫ ∞
T

.

The last two integrals are estimated from above in a rather straightforward
way, but the first one is quite delicate. Estimates used for the Green
function do not work, because some of the integrals diverge.
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Boundary Harnack principle

Carleson estimate

Theorem (Carleson estimate):There exists a constant C = C (R,Λ) > 0
such that for every Q ∈ ∂D, 0 < r < R/2, and every non-negative
function f in D that is harmonic in D ∩ B(Q, r) with respect to Y D and
vanishes continuously on ∂D ∩ B(Q, r), we have

f (x) ≤ Cf (x0) for x ∈ D ∩ B(Q, r/2),

where x0 ∈ D ∩ B(Q, r) with δD(x0) ≥ r/2.

In case φ(λ) = λ the Carleson estimate is proved for C 1,1-open sets by
using the jumping kernel estimates.

In case φ(λ) 6= λ, the Carleson estimate is proved when D is κ-fat and
satisfies the local exterior volume condition. In this case, the proof does
not use the explicit estimates for JY

D
.

Zoran Vondraček (University of Zagreb) Potential theory of SKP July 17, 2018 27 / 34



Boundary Harnack principle

Carleson estimate

Theorem (Carleson estimate):There exists a constant C = C (R,Λ) > 0
such that for every Q ∈ ∂D, 0 < r < R/2, and every non-negative
function f in D that is harmonic in D ∩ B(Q, r) with respect to Y D and
vanishes continuously on ∂D ∩ B(Q, r), we have

f (x) ≤ Cf (x0) for x ∈ D ∩ B(Q, r/2),

where x0 ∈ D ∩ B(Q, r) with δD(x0) ≥ r/2.

In case φ(λ) = λ the Carleson estimate is proved for C 1,1-open sets by
using the jumping kernel estimates.

In case φ(λ) 6= λ, the Carleson estimate is proved when D is κ-fat and
satisfies the local exterior volume condition. In this case, the proof does
not use the explicit estimates for JY

D
.
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Boundary Harnack principle

Carleson estimate, cont.

When φ(λ) 6= λ on uses
(1) the following integral estimate for the jumping kernel:

JD(x , y)

�
∫ T

0
Px(τZD > t)Py (τZD > t)

(
t−d/2β ∧ t

|x − y |d+2β

)
ν(t)dt

+ Px(τZD > 1)Py (τZD > 1) ,

(2) a parabolic Carleson-type estimate for ZD : For any T > 0 and
c0 ∈ (0, 1), there exists C = C (R1, κ, c0,T ) ≥ 1 such that for all
t ∈ (0,T ], r ≤ R1/2, Q ∈ ∂D and x , x0 ∈ D ∩ B(Q, r) with δD(x0) ≥ c0r ,

Px(τZD > t) ≤ CPx0(τZD > t).
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Boundary Harnack principle

Theorem: Assume that β = 1, or β ∈ (0, 1) and γ > 1/2. Let D ⊂ Rd be
a bounded C 1,1 open set with C 1,1 characteristics (R,Λ). There exists a
constant C = C (d ,Λ,R, β, γ) > 0 such that for any r ∈ (0,R], Q ∈ ∂D,
and any non-negative function f in D which is harmonic in D ∩ B(Q, r)
with respect to Y D and vanishes continuously on ∂D ∩ B(Q, r), we have

f (x)

δD(x)β
≤ C

f (y)

δD(y)β
for all x , y ∈ D ∩ B(Q, r/2).

As a consequence, the rate of decay of harmonic functions with respect to
Y D is given by δD(x)β, depends on β only, and is equal to the decay of
harmonic functions with respect to Z .
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Boundary Harnack principle

Failure of BHP for γ ≤ 1/2

Assume that ψ(λ) = λγ with 0 < γ ≤ 1/2.

Consider the following
non-scale invariant BHP: There is a constant R̂ ∈ (0, 1) such that for any
r ∈ (0, R̂ ], there exists a constant c = c(r) ≥ 1 such that for every
Q ∈ ∂D and any non-negative functions f , g in D which are harmonic in
D ∩ B(Q, r) with respect to Y D and vanish continuously on
∂D ∩ B(Q, r), we have

f (x)

f (y)
≤ c

g(x)

g(y)
for all x , y ∈ D ∩ B(Q, r/2).

By taking g = GY D
(·,w), w /∈ D ∩ B(Q, r), and by using the Green

function estimates, we get that for any r ∈ (0, R̂ ] there is C = C (r) > 0
such that for every Q ∈ ∂D and any non-negative function f as above

f (x)

f (y)
≤ C

δD(x)β

δD(y)β
, for all x , y ∈ D ∩ B(Q, r/2).
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Boundary Harnack principle

Since D satisfies the interior ball condition, there exist r0 small enough
and x (1) ∈ B(Q,R) ∩ D with δD(x (1)) = r0 such that
δD(x (s)) = |x (s) − Q| for all s ≤ 1 where x (s) = Q + s(x (1) − Q).

Choose a point z0 ∈ ∂D \ D ∩ B(Q, 2r0) with |z0 − Q| ≤ 1.

For n ∈ N large enough so that B(z0, 1/n) does not intersect B(Q, 2r0),
we define (for γ < 1/2; the case γ = 1/2 is similar),

fn(y) := δD(y)−β
1D∩B(z0,1/n)(y)

|D ∩ B(z0, 1/n)|
,

and

gn(x) := Ex [fn(Y D
τV

)] =

∫
D\D(2,2)

∫
V
GY D

V (x , z)JY
D

(z , y)fn(y)dzdy , x ∈ V .

Here V = VQ(2−2κ0r0) is a small C 1,1 set near Q.
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Boundary Harnack principle
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Boundary Harnack principle

Lemma: There exists C > 0 such that

lim inf
n→∞

gn(x) ≥ CδD(x)β log(r0/δD(x))

for all x = x (s) = (0̃, s) in CS with s small enough.

One can also show that for large n and all y ∈ D ∩ B(Q, 2−7κ0r0),

gn(x) ≤ c(r0)2β( 1
2
−γ)δD(y)2βγ ,

so that gn are harmonic in D ∩ B(Q, 2−7κ0r0) and vanish continuously on
∂D ∩ B(Q, 2−7κ0r0).
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Boundary Harnack principle

Therefore (by the assumption that BHP holds)

gn(y)

gn(w)
≤ C

δD(y)β

δD(w)β
for all y ∈ D ∩ B(Q, 2−8κ0r0)

where w = (0̃, 2−9κ0r0) and C = C (2−7κ0r0).

By the upper estimate of gn it follows that

lim sup
n→∞

gn(y) ≤ C lim sup
n→∞

gn(w)
δD(y)β

δD(w)β
≤ cδD(y)β.

By Lemma, for y = x = x (s), the left-hand side above is bounded from
below by CδD(x)β log(r0/δD(x)), yielding

log(r0/δD(x)) ≤ c

C
,

which is a contradiction.
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