On the potential theory of subordinate killed processes

Zoran Vondraček

University of Zagreb, Croatia

Sichuan University, Chengdu, July 16-20, 2018

Zoran Vondraček (University of Zagreb)

Potential theory of SKP

July 17, 2018 1 / 34

Table of Contents

- 2 Setting, assumptions and preliminaries
- 3 Boundary estimates

Boundary Harnack principle

(日) (同) (三) (三)

Table of Contents

- 2 Setting, assumptions and preliminaries
- 3 Boundary estimates
- 4 Boundary Harnack principle

Joint work with P. Kim (SNU) and R. Song (UIUC)

(日) (同) (三) (三)

-

• • • • • • • • • • • •

Let $Z = (Z_t, \mathbb{P}_x)$ be the isotropic 2α -stable process in \mathbb{R}^d , $\alpha \in (0, 1)$, $(Q_t)_{t\geq 0}$ the corresponding semigroup: $Q_t f(x) := \mathbb{E}_x f(Z_t)$ $t \geq 0$, $f : \mathbb{R}^d \to \mathbb{R}$.

Let $Z = (Z_t, \mathbb{P}_x)$ be the isotropic 2α -stable process in \mathbb{R}^d , $\alpha \in (0, 1)$, $(Q_t)_{t\geq 0}$ the corresponding semigroup: $Q_t f(x) := \mathbb{E}_x f(Z_t)$ $t \geq 0$, $f : \mathbb{R}^d \to \mathbb{R}$.

$$-(-\Delta)^{lpha}f:=\lim_{t o 0}rac{Q_tf-f}{t}$$
 is the fractional Laplacian.

Let $Z = (Z_t, \mathbb{P}_x)$ be the isotropic 2α -stable process in \mathbb{R}^d , $\alpha \in (0, 1)$, $(Q_t)_{t\geq 0}$ the corresponding semigroup: $Q_t f(x) := \mathbb{E}_x f(Z_t)$ $t \geq 0$, $f : \mathbb{R}^d \to \mathbb{R}$.

$$-(-\Delta)^{lpha}f:=\lim_{t o 0}rac{Q_tf-f}{t}$$
 is the fractional Laplacian.

For $D \subset \mathbb{R}^d$ open, let $\tau_D := \inf\{t > 0 : Z_t \notin D\}$, $Z_t^D := Z_t$ if $t < \tau_D$, ∂ (cemetary) otherwise, $Q_t^D f(x) := \mathbb{E}_x f(Z_t^D) = \mathbb{E}_x (f(Z_t), t < \tau_D)$ the corresponding semigroup.

Let $Z = (Z_t, \mathbb{P}_x)$ be the isotropic 2α -stable process in \mathbb{R}^d , $\alpha \in (0, 1)$, $(Q_t)_{t\geq 0}$ the corresponding semigroup: $Q_t f(x) := \mathbb{E}_x f(Z_t)$ $t \geq 0$, $f : \mathbb{R}^d \to \mathbb{R}$.

$$-(-\Delta)^{lpha}f:=\lim_{t o 0}rac{Q_tf-f}{t}$$
 is the fractional Laplacian.

For $D \subset \mathbb{R}^d$ open, let $\tau_D := \inf\{t > 0 : Z_t \notin D\}$, $Z_t^D := Z_t$ if $t < \tau_D$, ∂ (cemetary) otherwise, $Q_t^D f(x) := \mathbb{E}_x f(Z_t^D) = \mathbb{E}_x (f(Z_t), t < \tau_D)$ the corresponding semigroup.

$$\mathcal{L}_1 f := \lim_{t \to 0} \frac{Q_t^D f - f}{t}$$

a possible definition of fractional Laplacian in *D*; usually called *fractional* Laplacian in *D* with zero exterior condition. Notation: $-(-\Delta)^{\alpha}_{\ | D}$.

Let $W = (W_t, \mathbb{P}_x)$ be a Brownian motion in \mathbb{R}^d , $S = (S_t)_{t \ge 0}$ an independent α -stable subordinator. Then W_{S_t} is a subordinate Brownian motion and $(Z_t) \stackrel{d}{=} (W_{S_t})$.

Let $W = (W_t, \mathbb{P}_x)$ be a Brownian motion in \mathbb{R}^d , $S = (S_t)_{t \ge 0}$ an independent α -stable subordinator. Then W_{S_t} is a subordinate Brownian motion and $(Z_t) \stackrel{d}{=} (W_{S_t})$. Hence, Z^D is a killed subordinate Brownian motion (KSBM).

Let $W = (W_t, \mathbb{P}_x)$ be a Brownian motion in \mathbb{R}^d , $S = (S_t)_{t \ge 0}$ an independent α -stable subordinator. Then W_{S_t} is a subordinate Brownian motion and $(Z_t) \stackrel{d}{=} (W_{S_t})$. Hence, Z^D is a killed subordinate Brownian motion (KSBM).

 W^D Brownian motion killed upon exiting D, $Y_t^D := W_{S_t}^D$ is a subordinate killed Brownian motion (SKBM). If $(P_t^D)_{t\geq 0}$ is the semigroup of W^D , then the infinitesimal generator of Y^D is

$$\mathcal{L}_0 f = -(-\Delta_{\mid D})^{\alpha} f := \frac{1}{\mid \Gamma(-\alpha) \mid} \int_0^\infty (P_t^D f - f) t^{-\alpha - 1} dt$$

Another possible definition of a fractional Laplacian in *D*: *the fractional power of Dirichlet Laplacian*.

Zoran Vondraček (University of Zagreb)

- ∢ ศ⊒ ▶

Let $W = (W_t, \mathbb{P}_x)$ be a Brownian motion in \mathbb{R}^d , $S = (S_t)_{t \ge 0}$ an independent α -stable subordinator. Then W_{S_t} is a subordinate Brownian motion and $(Z_t) \stackrel{d}{=} (W_{S_t})$. Hence, Z^D is a killed subordinate Brownian motion (KSBM).

 W^D Brownian motion killed upon exiting D, $Y_t^D := W_{S_t}^D$ is a subordinate killed Brownian motion (SKBM). If $(P_t^D)_{t\geq 0}$ is the semigroup of W^D , then the infinitesimal generator of Y^D is

$$\mathcal{L}_0 f = -(-\Delta_{\mid D})^{\alpha} f := \frac{1}{\mid \Gamma(-\alpha) \mid} \int_0^\infty (P_t^D f - f) t^{-\alpha - 1} dt$$

Another possible definition of a fractional Laplacian in D: the fractional power of Dirichlet Laplacian. $\mathcal{L}_0 \neq \mathcal{L}_1$

Zoran Vondraček (University of Zagreb)

Let S be a β -stable subordinator, $\beta \in (0, 1]$, T a γ -stable subordinator, $\gamma \in (0, 1)$, so that $\beta \gamma = \alpha$. Let $Z_t = W_{S_t}$ be a SBM, Z^D the KSBM, and $Y_t^D = Z_{T_t}^D$ the subordinate killed Z.

・ロット 金田 マネ 山マ キロマ

Let S be a β -stable subordinator, $\beta \in (0, 1]$, T a γ -stable subordinator, $\gamma \in (0, 1)$, so that $\beta \gamma = \alpha$. Let $Z_t = W_{S_t}$ be a SBM, Z^D the KSBM, and $Y_t^D = Z_{T_t}^D$ the subordinate killed Z. Let $(R_t^D)_{t\geq 0}$ be the semigroup of Y^D . Then $\widetilde{Q}_t^D f \leq R_t^D f \leq Q_t^D f$, $f \geq 0$, and the infinitesimal generator of (R_t^D) can be written as

$$\mathcal{L}=-((-\Delta)^{eta}_{|D})^{\gamma}$$
 .

Let S be a β -stable subordinator, $\beta \in (0, 1]$, T a γ -stable subordinator, $\gamma \in (0, 1)$, so that $\beta \gamma = \alpha$. Let $Z_t = W_{S_t}$ be a SBM, Z^D the KSBM, and $Y_t^D = Z_{T_t}^D$ the subordinate killed Z. Let $(R_t^D)_{t\geq 0}$ be the semigroup of Y^D . Then $\widetilde{Q}_t^D f \leq R_t^D f \leq Q_t^D f$, $f \geq 0$, and the infinitesimal generator of (R_t^D) can be written as

$$\mathcal{L} = -((-\Delta)^eta_{\ |D})^\gamma\,.$$

Since $\beta \gamma = \alpha$, also a version of α -fractional Laplacian in D.

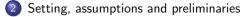
Let S be a β -stable subordinator, $\beta \in (0, 1]$, T a γ -stable subordinator, $\gamma \in (0, 1)$, so that $\beta \gamma = \alpha$. Let $Z_t = W_{S_t}$ be a SBM, Z^D the KSBM, and $Y_t^D = Z_{T_t}^D$ the subordinate killed Z. Let $(R_t^D)_{t\geq 0}$ be the semigroup of Y^D . Then $\widetilde{Q}_t^D f \leq R_t^D f \leq Q_t^D f$, $f \geq 0$, and the infinitesimal generator of (R_t^D) can be written as

$$\mathcal{L} = -((-\Delta)^eta_{\ |D})^\gamma\,.$$

Since $\beta \gamma = \alpha$, also a version of α -fractional Laplacian in D.

Goal: study potential theory of operators like \mathcal{L} (i.e. potential theory of Y^D) and see how it depends on β and γ .

・ロト ・聞ト ・ ヨト ・ ヨト



Boundary estimates

• • • • • • • • • • • •

Setting

 $W = (W_t, \mathbb{P}_x)$ Brownian motion in \mathbb{R}^D , $d \ge 3$, $D \subset \mathbb{R}^d$, a bounded open subset.

Setting

 $W = (W_t, \mathbb{P}_x)$ Brownian motion in \mathbb{R}^D , $d \ge 3$, $D \subset \mathbb{R}^d$, a bounded open subset.

 $S = (S_t)_{t \ge 0}$ a β -stable subordinator, $\beta \in (0, 1]$, and $T = (T_t)_{t \ge 0}$ a γ -stable subordinator, $\gamma \in (0, 1)$, with Laplace exponents ϕ and ψ , independent and independent of W. Let $\alpha := \beta \gamma \in (0, 1)$.

Setting

 $W = (W_t, \mathbb{P}_x)$ Brownian motion in \mathbb{R}^D , $d \ge 3$, $D \subset \mathbb{R}^d$, a bounded open subset.

 $S = (S_t)_{t \ge 0}$ a β -stable subordinator, $\beta \in (0, 1]$, and $T = (T_t)_{t \ge 0}$ a γ -stable subordinator, $\gamma \in (0, 1)$, with Laplace exponents ϕ and ψ , independent and independent of W. Let $\alpha := \beta \gamma \in (0, 1)$. Various processes:

 $Z_t := W_{S_t}$ subordinate Brownian motion; BM or 2β -stable $X_t := Z_{T_t} = W_{(S \circ T)_t}$ subordinate Z, twice SBM: 2α -stable Z^D killed Z, KSBM X^D killed X, KSBM $Y_t^D := Z_{T_t}^D$ subordinate Z^D , subordinate KSBM

κ -fat and $C^{1,1}$ -open sets

Let $0 < \kappa < 1$. An open set $D \subset \mathbb{R}^d$ is said to be κ -fat if there is $R_1 > 0$ such that for all $x \in \overline{D}$ and all $r \in (0, R_1]$, there is a ball $B(A_r(x), \kappa r) \subset D \cap B(x, r)$. The pair (R_1, κ) is called the characteristics of the κ -fat open set D.

κ -fat and $C^{1,1}$ -open sets

Let $0 < \kappa < 1$. An open set $D \subset \mathbb{R}^d$ is said to be κ -fat if there is $R_1 > 0$ such that for all $x \in \overline{D}$ and all $r \in (0, R_1]$, there is a ball $B(A_r(x), \kappa r) \subset D \cap B(x, r)$. The pair (R_1, κ) is called the characteristics of the κ -fat open set D.

Let $U \subset \mathbb{R}^d$ be an open set and let $Q \in \partial U$. We say that U is $C^{1,1}$ near Q if there exist a localization radius R > 0, a $C^{1,1}$ -function $\varphi_{\Omega}: \mathbb{R}^{d-1} \to \mathbb{R}$ satisfying $\varphi_{\Omega}(0) = 0, \nabla \varphi_{\Omega}(0) = (0, \dots, 0),$ $\|\nabla \varphi_{\Omega}\|_{\infty} \leq \Lambda, \ |\nabla \varphi_{\Omega}(z) - \nabla \varphi_{\Omega}(w)| \leq \Lambda |z - w|, \ \text{and an orthonormal}$ coordinate system CS_Q with its origin at Q such that $B(Q, R) \cap U = \{ y = (\widetilde{y}, y_d) \in B(0, R) \text{ in } CS_Q : y_d > \varphi_Q(\widetilde{y}) \}$ where $\tilde{y} := (y_1, \dots, y_{d-1})$. The pair (R, Λ) is called the $C^{1,1}$ characteristics of U near Q. An open set $U \subset \mathbb{R}^d$ is said to be a (uniform) $C^{1,1}$ open set with characteristics (R, Λ) if it is $C^{1,1}$ with characteristics (R, Λ) near every boundary point $Q \in \partial U$.

Zoran Vondraček (University of Zagreb)

Transition densities of Z: p(t, x, y) = p(t, |x - y|) where

$$p(t,r) = (4\pi t)^{-d/2} e^{-r^2/4t}, \quad S_t = t, \quad (Z = W)$$

 $p(t,r) = \int_0^\infty (4\pi s)^{-d/2} e^{-r^2/4s} \mathbb{P}(S_t \in ds), \quad \text{otherwise.}$

3

Transition densities of Z: p(t, x, y) = p(t, |x - y|) where

$$p(t,r) = (4\pi t)^{-d/2} e^{-r^2/4t}, \quad S_t = t, \quad (Z = W)$$

 $p(t,r) = \int_0^\infty (4\pi s)^{-d/2} e^{-r^2/4s} \mathbb{P}(S_t \in ds), \quad ext{otherwise}.$

Transition densities of Z^D :

$$p^D(t,x,y) = p(t,x,y) - \mathbb{E}_x[p(t- au_D,Z_{ au_D},y), au_D < t], \quad t > 0, \ x,y \in D.$$

Transition densities of Z: p(t, x, y) = p(t, |x - y|) where

$$p(t,r) = (4\pi t)^{-d/2} e^{-r^2/4t}, \quad S_t = t, \quad (Z = W)$$

 $p(t,r) = \int_0^\infty (4\pi s)^{-d/2} e^{-r^2/4s} \mathbb{P}(S_t \in ds), \quad \text{otherwise}.$

Transition densities of Z^D :

$$p^D(t,x,y) = p(t,x,y) - \mathbb{E}_x[p(t- au_D,Z_{ au_D},y), au_D < t], \quad t>0, \ x,y\in D.$$

Sharp two-sided estimates: (i) $\phi(\lambda) = \lambda$ $(\beta = 1)$; for $t \leq T$, $x, y \in D$,

$$p^{D}(t,x,y) \asymp \mathbb{P}_{x}(t < \tau_{D}^{W}) \mathbb{P}_{y}(t < \tau_{D}^{W})t^{-d/2}e^{-\frac{c|x-y|^{2}}{t}},$$

$$p^{D}(t,x,y) \asymp \left(\frac{\delta_{D}(x)}{t^{1/2}} \wedge 1\right)\left(\frac{\delta_{D}(y)}{t^{1/2}} \wedge 1\right)t^{-d/2}e^{-\frac{c|x-y|^{2}}{t}}$$

Varopoulos 2003 (D Lipschitz), Zhang 2003, Song 2004 (D C^{1,1})

Zoran Vondraček (University of Zagreb)

Potential theory of SKP

(ii) $t \leq T$, $x, y \in D$, D is κ -fat open set,

$$p^D(t,x,y) \asymp \mathbb{P}_x(t < au_t^Z) \mathbb{P}_y(t < au_D^Z) \left(t^{-d/2eta} \wedge rac{t}{|x-y|^{d+2eta}}
ight).$$

Zoran Vondraček (University of Zagreb)

■ ◆ ■ ▶ ■ つへで July 17, 2018 11 / 34

イロト イポト イヨト イヨト

(ii) $t \leq T$, $x, y \in D$, D is κ -fat open set,

$$p^D(t,x,y) \asymp \mathbb{P}_x(t < \tau_t^Z) \mathbb{P}_y(t < \tau_D^Z) \left(t^{-d/2\beta} \wedge \frac{t}{|x-y|^{d+2\beta}}
ight).$$

D is $C^{1,1}$ open set, $x, y \in D$,

$$egin{aligned} p^D(t,x,y) &\asymp & \left(rac{\delta_D(x)^eta}{t^{1/2}}\wedge 1
ight) \left(rac{\delta_D(y)^eta}{t^{1/2}}\wedge 1
ight) \ & imes \left(t^{-d/2eta}\wedge rac{t}{|x-y|^{d+2eta}}
ight), \quad t\leq T, \ p^D(t,x,y) &\asymp & e^{-\lambda_1 t}\delta_D(x)^eta\delta_D(y)^eta, \quad t\geq T\,. \end{aligned}$$

Chen, Kim, Song 2010

-

Green functions of Y^D and X: For $x, y \in D$,

$$G^{Y^D}(x,y) = \int_0^\infty p^D(t,x,y)v(t)\,dt \leq \int_0^\infty p(t,x,y)v(t)\,dt = G^X(x,y)\,.$$

Green functions of Y^D and X: For $x, y \in D$,

$$G^{Y^{D}}(x,y) = \int_{0}^{\infty} p^{D}(t,x,y)v(t) dt \leq \int_{0}^{\infty} p(t,x,y)v(t) dt = G^{X}(x,y).$$

Here $v(t) = t^{\gamma-1}$ is the potential density of (T_t) .

- 4 同 6 4 日 6 4 日 6

Green functions of Y^D and X: For $x, y \in D$,

$$G^{Y^D}(x,y) = \int_0^\infty p^D(t,x,y)v(t)\,dt \leq \int_0^\infty p(t,x,y)v(t)\,dt = G^X(x,y)\,.$$

Here $v(t) = t^{\gamma-1}$ is the potential density of (T_t) .

Jumping kernels of of Y^D and X: For $x, y \in D$,

$$J^{Y^{D}}(x,y) = \int_{0}^{\infty} p^{D}(t,x,y)\nu(t) dt \leq \int_{0}^{\infty} p(t,x,y)\nu(t) dt = J^{X}(x,y).$$

Zoran Vondraček (University of Zagreb)

July 17, 2018 12 / 34

Green functions of Y^D and X: For $x, y \in D$,

$$G^{Y^D}(x,y) = \int_0^\infty p^D(t,x,y)v(t)\,dt \leq \int_0^\infty p(t,x,y)v(t)\,dt = G^X(x,y)\,.$$

Here $v(t) = t^{\gamma-1}$ is the potential density of (T_t) .

Jumping kernels of of Y^D and X: For $x, y \in D$,

$$J^{Y^{D}}(x,y) = \int_{0}^{\infty} p^{D}(t,x,y)\nu(t) dt \leq \int_{0}^{\infty} p(t,x,y)\nu(t) dt = J^{X}(x,y).$$

Here $\nu(t) = t^{-\gamma-1}$ is the Lévy density of (T_t) .

イロト 不得下 イヨト イヨト

 (X_t, \mathbb{P}_x) a strong Markov process in a metric space \mathfrak{X} . A non-negative $u : \mathfrak{X} \to [0, \infty)$ is harmonic in an open $U \subset \mathfrak{X}$ (wrt the process X) if

 $u(x) = \mathbb{E}_x \left(u(X_{\tau_B}) \right)$, for all bounded open $B \subset U$ and for all $x \in B$.

 (X_t, \mathbb{P}_x) a strong Markov process in a metric space \mathfrak{X} . A non-negative $u : \mathfrak{X} \to [0, \infty)$ is harmonic in an open $U \subset \mathfrak{X}$ (wrt the process X) if

 $u(x) = \mathbb{E}_x \left(u(X_{\tau_B})
ight)$, for all bounded open $B \subset U$ and for all $x \in B$.

A non-negative $u:\mathfrak{X} \to [0,\infty)$ is regular harmonic in an open $U \subset \mathfrak{X}$ if

$$u(x) = \mathbb{E}_x \left(u(X_{\tau_D}), \tau_U < \infty \right), \quad \text{for all } x \in U.$$

 (X_t, \mathbb{P}_x) a strong Markov process in a metric space \mathfrak{X} . A non-negative $u : \mathfrak{X} \to [0, \infty)$ is harmonic in an open $U \subset \mathfrak{X}$ (wrt the process X) if

 $u(x) = \mathbb{E}_x \left(u(X_{\tau_B})
ight)$, for all bounded open $B \subset U$ and for all $x \in B$.

A non-negative $u:\mathfrak{X}
ightarrow [0,\infty)$ is regular harmonic in an open $U\subset\mathfrak{X}$ if

$$u(x) = \mathbb{E}_x \left(u(X_{\tau_D}), \tau_U < \infty \right), \quad \text{for all } x \in U.$$

By the strong Markov property, regular harmonic implies harmonic.

イロト イポト イヨト イヨト 二日

 (X_t, \mathbb{P}_x) a strong Markov process in a metric space \mathfrak{X} . A non-negative $u : \mathfrak{X} \to [0, \infty)$ is harmonic in an open $U \subset \mathfrak{X}$ (wrt the process X) if

 $u(x) = \mathbb{E}_x \left(u(X_{\tau_B})
ight)$, for all bounded open $B \subset U$ and for all $x \in B$.

A non-negative $u:\mathfrak{X}
ightarrow [0,\infty)$ is regular harmonic in an open $\, U \subset \mathfrak{X}$ if

$$u(x) = \mathbb{E}_x \left(u(X_{\tau_D}), \tau_U < \infty \right), \quad \text{for all } x \in U.$$

By the strong Markov property, regular harmonic implies harmonic.

Harnack inequality: There exists C > 0 such that for every $x_0 \in \mathfrak{X}$, every $r \in (0,1]$ and every function $u : \mathfrak{X} \to [0,\infty)$ which is harmonic in $B(x_0,r)$ with respect to X, it holds that

$$u(x) \leq Cu(y), \qquad x, y \in B(x_0, r/2).$$

Harmonic functions

 (X_t, \mathbb{P}_x) a strong Markov process in a metric space \mathfrak{X} . A non-negative $u : \mathfrak{X} \to [0, \infty)$ is harmonic in an open $U \subset \mathfrak{X}$ (wrt the process X) if

 $u(x) = \mathbb{E}_x \left(u(X_{\tau_B})
ight)$, for all bounded open $B \subset U$ and for all $x \in B$.

A non-negative $u:\mathfrak{X}
ightarrow [0,\infty)$ is regular harmonic in an open $\, U \subset \mathfrak{X}$ if

$$u(x) = \mathbb{E}_x \left(u(X_{\tau_D}), \tau_U < \infty \right), \quad \text{for all } x \in U.$$

By the strong Markov property, regular harmonic implies harmonic.

Harnack inequality: There exists C > 0 such that for every $x_0 \in \mathfrak{X}$, every $r \in (0,1]$ and every function $u : \mathfrak{X} \to [0,\infty)$ which is harmonic in $B(x_0,r)$ with respect to X, it holds that

$$u(x) \leq Cu(y), \qquad x, y \in B(x_0, r/2).$$

C does *not* depend on $r \in (0, 1]$ - scale invariant HI.

Zoran Vondraček (University of Zagreb)

Boundary Harnack principle

BHP for X: Let $U \subset \mathfrak{X} \subset \mathbb{R}^d$. There exists C > 0 such that for every $r \in (0, 1]$, every $Q \in \partial U$, any nonegative f and g on \mathbb{R}^d which are regular harmonic in $U \cap B(Q, r)$ and vanish on $U^c \cap B(Q, r)$,

$$\frac{f(x)}{g(x)} \leq C \frac{f(y)}{g(y)}, \quad x, y \in U \cap B(Q, r/2)$$

Boundary Harnack principle

BHP for X: Let $U \subset \mathfrak{X} \subset \mathbb{R}^d$. There exists C > 0 such that for every $r \in (0, 1]$, every $Q \in \partial U$, any nonegative f and g on \mathbb{R}^d which are regular harmonic in $U \cap B(Q, r)$ and vanish on $U^c \cap B(Q, r)$,

$$rac{f(x)}{g(x)} \leq C rac{f(y)}{g(y)}, \quad x,y \in U \cap B(Q,r/2).$$

BHP with explicit decay rate: When U is $C^{1,1}$, replace g with an explicit function of $\delta_U(\cdot)$.

Boundary Harnack principle

BHP for X: Let $U \subset \mathfrak{X} \subset \mathbb{R}^d$. There exists C > 0 such that for every $r \in (0, 1]$, every $Q \in \partial U$, any nonegative f and g on \mathbb{R}^d which are regular harmonic in $U \cap B(Q, r)$ and vanish on $U^c \cap B(Q, r)$,

$$rac{f(x)}{g(x)} \leq C rac{f(y)}{g(y)}, \quad x,y \in U \cap B(Q,r/2).$$

BHP with explicit decay rate: When U is $C^{1,1}$, replace g with an explicit function of $\delta_U(\cdot)$. For example, if X is Brownian motion, then $\frac{f(x)}{\delta_U(x)} \leq C \frac{f(y)}{\delta_U(y)}$. If X is

isotropic 2α -stable, then $\frac{f(x)}{\delta_U(x)^{\alpha}} \leq C \frac{f(y)}{\delta_U(y)^{\alpha}}$.

Zoran Vondraček (University of Zagreb)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Harnack inequalities

Theorem: Suppose that $D \subset \mathbb{R}^d$ is a bounded κ -fat (Lipschitz when $\beta = 1$) open set. There exists a constant C > 0 such that for any $r \in (0, 1]$ and $B(x_0, r) \subset D$ and any Borel function f which is non-negative in D and harmonic in $B(x_0, r)$ with respect to Y^D , we have

 $f(x) \leq Cf(y)$, for all $x, y \in B(x_0, r/2)$.

Harnack inequalities

Theorem: Suppose that $D \subset \mathbb{R}^d$ is a bounded κ -fat (Lipschitz when $\beta = 1$) open set. There exists a constant C > 0 such that for any $r \in (0, 1]$ and $B(x_0, r) \subset D$ and any Borel function f which is non-negative in D and harmonic in $B(x_0, r)$ with respect to Y^D , we have

 $f(x) \leq Cf(y)$, for all $x, y \in B(x_0, r/2)$.

Theorem: Suppose that $D \subset \mathbb{R}^d$ is a bounded κ -fat open set, $\beta \in (0, 1)$. There exists a constant $C = C(\beta, \gamma, \operatorname{diam}(D)) > 1$ such that the following is true: If L > 0 and $x_1, x_2 \in D$ and $r \in (0, 1)$ are such that $|x_1 - x_2| < Lr$ and $B(x_1, r) \cup B(x_2, r) \subset D$, then for any Borel function f which is non-negative in D and harmonic in $B(x_1, r) \cup B(x_2, r)$ with respect to Y^D , we have

$$C^{-1}(L \vee 1)^{-d-\beta}f(x_2) \leq f(x_1) \leq C(L \vee 1)^{d+\beta}f(x_2).$$

(

One of the main ingredients of the proof is the following comparison of jumping kernel.

Lemma: Suppose that $D \subset \mathbb{R}^d$ is a bounded κ -fat (Lipschitz when $\beta = 1$) open set. For every $\varepsilon_0 \in (0, 1]$, there exists a constant $C \ge 1$ such that for all $x_0 \in D$ and all $r \le 1$ satisfying $B(x_0, (1 + \varepsilon_0)r) \subset D$, it holds that

$$J^{Y^D}(z,x_1) \leq C J^{Y^D}(z,x_2)\,,\quad x_1,x_2\in B(x_0,r),\ \ z\in D\setminus B(x_0,(1+arepsilon_0)r)\,.$$

Boundary Harnack principle in the interior of D

Theorem: Let $D \subset \mathbb{R}^d$, $d \geq 3$, be a bounded κ -fat (Lipschitz when $\beta = 1$) open set. There exists a constant $b = b(\beta, \gamma, d) > 2$ such that, for every open set $E \subset D$ and every $Q \in \partial E \cap D$ such that E is $C^{1,1}$ near Q with characteristics ($\delta_D(Q) \land 1, \Lambda$), the following holds: There exists a constant $C = C(\delta_D(Q) \land 1, \Lambda, \psi, \phi, d) > 0$ such that for every $r \leq (\delta_D(Q) \land 1)/(b+2)$ and every non-negative function f on D which is regular harmonic in $E \cap B(Q, r)$ with respect to Y^D and vanishes on $E^c \cap B(Q, r)$, we have for $x, y \in E \cap B(Q, 2^{-6}\kappa_0^4 r)$,

$$\frac{f(x)}{\delta_E(x)^{\alpha}} \leq C \frac{f(y)}{\delta_E(y)^{\alpha}},$$

where $\kappa_0 = (1 + (1 + \Lambda)^2)^{-1/2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

3 Boundary estimates

э

- K 🖻

Image: A math a math

From now on, D is a bounded $C^{1,1}$ -open set in \mathbb{R}^d , $d \geq 3$.

From now on, D is a bounded $C^{1,1}$ -open set in \mathbb{R}^d , $d \ge 3$. Let

$$g(r):=\frac{1}{r^{d-2\alpha}}, \quad r>0.$$

Note that g(|x - y|) is the Green function estimate for X.

From now on, D is a bounded $C^{1,1}$ -open set in \mathbb{R}^d , $d \ge 3$. Let

$$g(r):=\frac{1}{r^{d-2\alpha}}, \quad r>0.$$

Note that g(|x - y|) is the Green function estimate for X.

Theorem: There exists a constant $C \ge 1$ such that for all $x, y \in D$,

$$G^{Y^D}(x,y) \asymp^C \left(\frac{\delta_D(x)^{\beta}}{|x-y|^{\beta}} \wedge 1 \right) \left(\frac{\delta_D(y)^{\beta}}{|x-y|^{\beta}} \wedge 1 \right) g(|x-y|).$$

Zoran Vondraček (University of Zagreb)

From now on, D is a bounded $C^{1,1}$ -open set in \mathbb{R}^d , $d \ge 3$. Let

$$g(r):=\frac{1}{r^{d-2\alpha}}, \quad r>0.$$

Note that g(|x - y|) is the Green function estimate for X.

Theorem: There exists a constant $C \ge 1$ such that for all $x, y \in D$,

$$G^{Y^D}(x,y) \asymp^C \left(rac{\delta_D(x)^{eta}}{|x-y|^{eta}} \wedge 1
ight) \left(rac{\delta_D(y)^{eta}}{|x-y|^{eta}} \wedge 1
ight) g(|x-y|) \, .$$

The boundary behavior $\delta_D(x)^{\beta}$ completely determined by ϕ (that is, β); same as the one of Z^D .

Zoran Vondraček (University of Zagreb)

▶ ◀ ≣ ▶ ≣ ዏ � 여 July 17, 2018 19 / 34

Outline of the proof: With $T = 2 \operatorname{diam}(D)^{2\beta}$, write

$$G^{Y^{D}}(x,y) = \int_{0}^{\infty} p^{D}(t,x,y)v(t)dt = \int_{0}^{|x-y|^{2\beta}} + \int_{|x-y|^{2\beta}}^{T} + \int_{T}^{\infty},$$

use sharp estimates of $p^{D}(t, x, y)$ and $v(t) = t^{\gamma-1}$.

3

< ロ > < 同 > < 三 > < 三

Outline of the proof: With $T = 2 \operatorname{diam}(D)^{2\beta}$, write

$$G^{Y^{D}}(x,y) = \int_{0}^{\infty} p^{D}(t,x,y)v(t)dt = \int_{0}^{|x-y|^{2\beta}} + \int_{|x-y|^{2\beta}}^{T} + \int_{T}^{\infty},$$

use sharp estimates of $p^{D}(t, x, y)$ and $v(t) = t^{\gamma-1}$.

For the upper bound estimate all three integrals, for the lower only the first which is the dominating term.

Recall that $\mathbb{E}_{x}\tau_{D} = \int_{D} G^{Y^{D}}(x, y) dy$ (in fact, $\tau_{D} = \zeta$ - the lifetime of Y^{D}).

Recall that $\mathbb{E}_{x}\tau_{D} = \int_{D} G^{Y^{D}}(x, y) dy$ (in fact, $\tau_{D} = \zeta$ - the lifetime of Y^{D}). For killed processes like Z^{D} (or X^{D}), the asymptotics of $\mathbb{E}_{x}\tau_{D}$ as $x \to \partial D$ is the same as the asymptotics of $x \mapsto G^{Z^{D}}(x, y)$.

Recall that $\mathbb{E}_{x}\tau_{D} = \int_{D} G^{Y^{D}}(x, y) dy$ (in fact, $\tau_{D} = \zeta$ - the lifetime of Y^{D}). For killed processes like Z^{D} (or X^{D}), the asymptotics of $\mathbb{E}_{x}\tau_{D}$ as $x \to \partial D$ is the same as the asymptotics of $x \mapsto G^{Z^{D}}(x, y)$. Somewhat surprisingly, this need not be the case for Y^{D} .

Recall that $\mathbb{E}_{x}\tau_{D} = \int_{D} G^{Y^{D}}(x, y) dy$ (in fact, $\tau_{D} = \zeta$ - the lifetime of Y^{D}). For killed processes like Z^{D} (or X^{D}), the asymptotics of $\mathbb{E}_{x}\tau_{D}$ as $x \to \partial D$ is the same as the asymptotics of $x \mapsto G^{Z^{D}}(x, y)$. Somewhat surprisingly, this need not be the case for Y^{D} .

It holds that

$$\mathbb{E}_{x}\tau_{D} \asymp \left\{ \begin{array}{ll} \delta_{D}(x)^{\beta}, & \gamma > 1/2, \\ \delta_{D}(x)^{\beta}\log(1/\delta_{D}(x)), & \gamma = 1/2, \\ \delta_{D}(x)^{2\gamma\beta}, & \gamma < 1/2 \, . \end{array} \right.$$

Zoran Vondraček (University of Zagreb)

Potential theory of SKP

July 17, 2018 21 / 34

Jumping kernel estimates in $C^{1,1}$ -open sets

Let

$$j(r):=\frac{1}{r^{d+2\alpha}}, \quad r>0.$$

Note that j(|x - y|) is the Lévy density estimate for X.

Jumping kernel estimates in $C^{1,1}$ -open sets

Let

$$j(r):=\frac{1}{r^{d+2\alpha}}, \quad r>0.$$

Note that j(|x - y|) is the Lévy density estimate for X.

Theorem: Suppose $\phi(\lambda) = \lambda$ (that is $\beta = 1$). There exists a constant $C \ge 1$ such that for all $x, y \in D$,

$$J^{Y^D}(x,y) symp ^C \left(rac{\delta_D(x)}{|x-y|} \wedge 1
ight) \left(rac{\delta_D(y)}{|x-y|} \wedge 1
ight) j(|x-y|) \, .$$

Zoran Vondraček (University of Zagreb)

▶ ◀ ≣ ▶ Ξ ∽ 즉 July 17, 2018 22 / 34

Jumping kernel estimates in $C^{1,1}$ -open sets

Let

$$j(r):=\frac{1}{r^{d+2\alpha}}, \quad r>0.$$

Note that j(|x - y|) is the Lévy density estimate for X.

Theorem: Suppose $\phi(\lambda) = \lambda$ (that is $\beta = 1$). There exists a constant $C \ge 1$ such that for all $x, y \in D$,

$$J^{Y^D}(x,y) \asymp^{C} \left(rac{\delta_D(x)}{|x-y|} \wedge 1
ight) \left(rac{\delta_D(y)}{|x-y|} \wedge 1
ight) j(|x-y|) \, .$$

Boundary behavior same as for the Green function. The proof similar, uses $J^{Y^D}(x,y) = \int_0^\infty p^D(t,x,y)t^{-\gamma-1}dt$,

Jumping kernel estimates in $C^{1,1}$ -open sets (cont.)

Case $\phi(\lambda) \neq \lambda$ (that is $\beta \in (0, 1)$).

(日) (周) (日) (日) (日) (0) (0)

Jumping kernel estimates in $C^{1,1}$ -open sets (cont.)

Case $\phi(\lambda) \neq \lambda$ (that is $\beta \in (0, 1)$).

$$J^{Y^{D}}(x,y) \asymp \begin{cases} \left(\frac{\delta_{D}(x) \wedge \delta_{D}(y)\right)^{2\beta}}{|x-y|^{2\beta}} \wedge 1\right)^{1-\gamma} \frac{1}{|x-y|^{d+2\gamma\beta}}, & \gamma > 1/2, \\\\ \left(\frac{\delta_{D}(x) \wedge \delta_{D}(y)\right)^{2\beta}}{|x-y|^{2\beta}} \wedge 1\right)^{1/2}, \\ \times \log \left(1 + \frac{(\delta_{D}(x) \vee \delta_{D}(y))^{2\beta} \wedge |x-y|^{2\beta}}{(\delta_{D}(x) \wedge \delta_{D}(y))^{2\beta} \wedge |x-y|^{2\beta}}\right) \frac{1}{|x-y|^{d+\beta}}, & \gamma = 1/2, \\\\ \left(\frac{\delta_{D}(x) \wedge \delta_{D}(y)\right)^{2\beta}}{|x-y|^{2\beta}} \wedge 1\right)^{1/2} \\ \times \left(\frac{(\delta_{D}(x) \vee \delta_{D}(y))^{2\beta}}{|x-y|^{2\beta}} \wedge 1\right) \frac{1}{|x-y|^{d+2\gamma\beta}}, & \gamma < 1/2. \end{cases}$$

Zoran Vondraček (University of Zagreb)

July 17, 2018 23 / 34

(日) (周) (日) (日) (日) (0) (0)

Example

Let $\psi(\lambda) = \lambda^{\gamma}$ and assume that $\beta \in (0, 1)$. Fix $y \in D$. As $\delta_D(x) \to 0$, we have

$$J^{Y^D}(x,y) \asymp^c egin{cases} \delta_D(x)^eta, & 0 < \gamma < 1/2, \ \delta_D(x)^eta \log(1/\delta_D(x)), & \gamma = 1/2, \ \delta_D(x)^eta \delta_D(x)^eta - 2\gammaeta = \delta_D(x)^{2eta(1-\gamma)}, & 1/2 < \gamma < 1. \end{cases}$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Example

Let $\psi(\lambda) = \lambda^{\gamma}$ and assume that $\beta \in (0, 1)$. Fix $y \in D$. As $\delta_D(x) \to 0$, we have

$$J^{Y^{D}}(x,y) \asymp^{c} \begin{cases} \delta_{D}(x)^{\beta}, & 0 < \gamma < 1/2, \\ \delta_{D}(x)^{\beta} \log(1/\delta_{D}(x)), & \gamma = 1/2, \\ \delta_{D}(x)^{\beta} \delta_{D}(x)^{\beta-2\gamma\beta} = \delta_{D}(x)^{2\beta(1-\gamma)}, & 1/2 < \gamma < 1. \end{cases}$$

Note that the boundary behavior of J^{Y^D} is determined by both β and γ .

(日) (同) (三) (三)

Example

Let $\psi(\lambda) = \lambda^{\gamma}$ and assume that $\beta \in (0, 1)$. Fix $y \in D$. As $\delta_D(x) \to 0$, we have

$$J^{Y^D}(x,y) \asymp^c egin{cases} \delta_D(x)^eta, & 0 < \gamma < 1/2, \ \delta_D(x)^eta \log(1/\delta_D(x)), & \gamma = 1/2, \ \delta_D(x)^eta \delta_D(x)^eta - 2\gammaeta = \delta_D(x)^{2eta(1-\gamma)}, & 1/2 < \gamma < 1. \end{cases}$$

Note that the boundary behavior of J^{Y^D} is determined by both β and γ .

In case $\phi(\lambda) = \lambda$, in all three cases

$$J^{Y^D}(x,y) \asymp^{c} \delta_D(x).$$

Zoran Vondraček (University of Zagreb)

≣▶ ◀ ≣▶ ≣ ∽ΩQC July 17, 2018 24 / 34

イロト 人間ト イヨト イヨト

The proof of the theorem uses that

٠

$$J^{Y^D}(x,y) = \int_0^\infty p^D(t,x,y)\nu(t)dt\,,$$

estimates of $p^{D}(t, x, y)$ and $\nu(t) = t^{-\gamma-1}$. The integral is split into three parts:

$$\int_{0}^{|x-y|^{2\beta}} + \int_{|x-y|^{2\beta}}^{T} + \int_{T}^{\infty}$$

The last two integrals are estimated from above in a rather straightforward way, but the first one is quite delicate. Estimates used for the Green function do not work, because some of the integrals diverge.

Setting, assumptions and preliminaries

3 Boundary estimates

Boundary Harnack principle

Zoran Vondraček (University of Zagreb)

4 E

Image: A match a ma

Carleson estimate

Theorem (Carleson estimate): There exists a constant $C = C(R, \Lambda) > 0$ such that for every $Q \in \partial D$, 0 < r < R/2, and every non-negative function f in D that is harmonic in $D \cap B(Q, r)$ with respect to Y^D and vanishes continuously on $\partial D \cap B(Q, r)$, we have

 $f(x) \leq Cf(x_0)$ for $x \in D \cap B(Q, r/2)$,

where $x_0 \in D \cap B(Q, r)$ with $\delta_D(x_0) \ge r/2$.

イロト 人間ト イヨト イヨト

Carleson estimate

Theorem (Carleson estimate): There exists a constant $C = C(R, \Lambda) > 0$ such that for every $Q \in \partial D$, 0 < r < R/2, and every non-negative function f in D that is harmonic in $D \cap B(Q, r)$ with respect to Y^D and vanishes continuously on $\partial D \cap B(Q, r)$, we have

 $f(x) \leq Cf(x_0)$ for $x \in D \cap B(Q, r/2)$,

where $x_0 \in D \cap B(Q, r)$ with $\delta_D(x_0) \ge r/2$.

In case $\phi(\lambda) = \lambda$ the Carleson estimate is proved for $C^{1,1}$ -open sets by using the jumping kernel estimates.

→ ∃ →

Image: A match a ma

Carleson estimate

Theorem (Carleson estimate): There exists a constant $C = C(R, \Lambda) > 0$ such that for every $Q \in \partial D$, 0 < r < R/2, and every non-negative function f in D that is harmonic in $D \cap B(Q, r)$ with respect to Y^D and vanishes continuously on $\partial D \cap B(Q, r)$, we have

 $f(x) \leq Cf(x_0)$ for $x \in D \cap B(Q, r/2)$,

where $x_0 \in D \cap B(Q, r)$ with $\delta_D(x_0) \ge r/2$.

In case $\phi(\lambda) = \lambda$ the Carleson estimate is proved for $C^{1,1}$ -open sets by using the jumping kernel estimates.

In case $\phi(\lambda) \neq \lambda$, the Carleson estimate is proved when D is κ -fat and satisfies the local exterior volume condition. In this case, the proof does not use the explicit estimates for J^{Y^D} .

- E

Image: A match a ma

Carleson estimate, cont.

When $\phi(\lambda) \neq \lambda$ on uses (1) the following integral estimate for the jumping kernel:

Image: A math a math

Carleson estimate, cont.

When $\phi(\lambda) \neq \lambda$ on uses (1) the following integral estimate for the jumping kernel:

$$egin{aligned} &J^D(x,y)\ &symp & \lesssim \int_0^T \mathbb{P}_x(au_D^Z > t) \mathbb{P}_y(au_D^Z > t) \left(t^{-d/2eta} \wedge rac{t}{|x-y|^{d+2eta}}
ight)
u(t) dt\ &+ \mathbb{P}_x(au_D^Z > 1) \mathbb{P}_y(au_D^Z > 1)\,, \end{aligned}$$

.

Image: A match a ma

Carleson estimate, cont.

When $\phi(\lambda) \neq \lambda$ on uses (1) the following integral estimate for the jumping kernel:

$$egin{aligned} &J^D(x,y)\ &symp & \lesssim \int_0^T \mathbb{P}_x(au_D^Z > t) \mathbb{P}_y(au_D^Z > t) \left(t^{-d/2eta} \wedge rac{t}{|x-y|^{d+2eta}}
ight)
u(t) dt\ &+ \mathbb{P}_x(au_D^Z > 1) \mathbb{P}_y(au_D^Z > 1)\,, \end{aligned}$$

(2) a parabolic Carleson-type estimate for Z^D : For any T > 0 and $c_0 \in (0,1)$, there exists $C = C(R_1, \kappa, c_0, T) \ge 1$ such that for all $t \in (0, T]$, $r \le R_1/2$, $Q \in \partial D$ and $x, x_0 \in D \cap B(Q, r)$ with $\delta_D(x_0) \ge c_0 r$,

$$\mathbb{P}_{\mathsf{x}}(\tau_D^{\mathsf{Z}} > t) \leq C \mathbb{P}_{\mathsf{x}_0}(\tau_D^{\mathsf{Z}} > t).$$

• • • • • • • • • • • •

Theorem: Assume that $\beta = 1$, or $\beta \in (0, 1)$ and $\gamma > 1/2$. Let $D \subset \mathbb{R}^d$ be a bounded $C^{1,1}$ open set with $C^{1,1}$ characteristics (R, Λ) . There exists a constant $C = C(d, \Lambda, R, \beta, \gamma) > 0$ such that for any $r \in (0, R]$, $Q \in \partial D$, and any non-negative function f in D which is harmonic in $D \cap B(Q, r)$ with respect to Y^D and vanishes continuously on $\partial D \cap B(Q, r)$, we have

$$\frac{f(x)}{\delta_D(x)^\beta} \le C \, \frac{f(y)}{\delta_D(y)^\beta} \qquad \text{for all } x, y \in D \cap B(Q, r/2).$$

Theorem: Assume that $\beta = 1$, or $\beta \in (0, 1)$ and $\gamma > 1/2$. Let $D \subset \mathbb{R}^d$ be a bounded $C^{1,1}$ open set with $C^{1,1}$ characteristics (R, Λ) . There exists a constant $C = C(d, \Lambda, R, \beta, \gamma) > 0$ such that for any $r \in (0, R]$, $Q \in \partial D$, and any non-negative function f in D which is harmonic in $D \cap B(Q, r)$ with respect to Y^D and vanishes continuously on $\partial D \cap B(Q, r)$, we have

$$\frac{f(x)}{\delta_D(x)^\beta} \le C \, \frac{f(y)}{\delta_D(y)^\beta} \qquad \text{for all } x, y \in D \cap B(Q, r/2).$$

As a consequence, the rate of decay of harmonic functions with respect to Y^D is given by $\delta_D(x)^\beta$, depends on β only, and is equal to the decay of harmonic functions with respect to Z.

Failure of BHP for $\gamma \leq 1/2$

Assume that $\psi(\lambda) = \lambda^{\gamma}$ with $0 < \gamma \leq 1/2$.

Failure of BHP for $\gamma \leq 1/2$

Assume that $\psi(\lambda) = \lambda^{\gamma}$ with $0 < \gamma \le 1/2$. Consider the following non-scale invariant BHP: There is a constant $\widehat{R} \in (0, 1)$ such that for any $r \in (0, \widehat{R}]$, there exists a constant $c = c(r) \ge 1$ such that for every $Q \in \partial D$ and any non-negative functions f, g in D which are harmonic in $D \cap B(Q, r)$ with respect to Y^D and vanish continuously on $\partial D \cap B(Q, r)$, we have

$$rac{f(x)}{f(y)} \leq c \, rac{g(x)}{g(y)} \qquad ext{for all } x,y \in D \cap B(Q,r/2).$$

Failure of BHP for $\gamma \leq 1/2$

Assume that $\psi(\lambda) = \lambda^{\gamma}$ with $0 < \gamma \le 1/2$. Consider the following non-scale invariant BHP: There is a constant $\widehat{R} \in (0, 1)$ such that for any $r \in (0, \widehat{R}]$, there exists a constant $c = c(r) \ge 1$ such that for every $Q \in \partial D$ and any non-negative functions f, g in D which are harmonic in $D \cap B(Q, r)$ with respect to Y^D and vanish continuously on $\partial D \cap B(Q, r)$, we have

$$rac{f(x)}{f(y)} \leq c \, rac{g(x)}{g(y)} \qquad ext{for all } x, y \in D \cap B(Q, r/2)$$

By taking $g = G^{Y^D}(\cdot, w)$, $w \notin D \cap B(Q, r)$, and by using the Green function estimates, we get that for any $r \in (0, \widehat{R}]$ there is C = C(r) > 0 such that for every $Q \in \partial D$ and any non-negative function f as above

$$\frac{f(x)}{f(y)} \ \le \ C \, \frac{\delta_D(x)^\beta}{\delta_D(y)^\beta}, \quad \text{for all } x,y \in D \cap B(Q,r/2).$$

Zoran Vondraček (University of Zagreb)

Potential theory of SKP

Choose a point $z_0 \in \partial D \setminus \overline{D \cap B(Q, 2r_0)}$ with $|z_0 - Q| \leq 1$.

Zoran Vondraček (University of Zagreb)

July 17, 2018 31 / 34

Choose a point $z_0 \in \partial D \setminus \overline{D \cap B(Q, 2r_0)}$ with $|z_0 - Q| \le 1$. For $n \in \mathbb{N}$ large enough so that $B(z_0, 1/n)$ does not intersect $B(Q, 2r_0)$, we define (for $\gamma < 1/2$; the case $\gamma = 1/2$ is similar),

$$f_n(y) := \delta_D(y)^{-\beta} \frac{\mathbf{1}_{D \cap B(z_0, 1/n)}(y)}{|D \cap B(z_0, 1/n)|},$$

< 67 ▶

Choose a point $z_0 \in \partial D \setminus \overline{D \cap B(Q, 2r_0)}$ with $|z_0 - Q| \leq 1$. For $n \in \mathbb{N}$ large enough so that $B(z_0, 1/n)$ does not intersect $B(Q, 2r_0)$, we define (for $\gamma < 1/2$; the case $\gamma = 1/2$ is similar),

$$f_n(y) := \delta_D(y)^{-eta} rac{\mathbf{1}_{D \cap B(z_0, 1/n)}(y)}{|D \cap B(z_0, 1/n)|},$$

and

$$g_n(x) := \mathbb{E}_x[f_n(Y^D_{\tau_V})] = \int_{D \setminus D(2,2)} \int_V G^{Y^D}_V(x,z) J^{Y^D}(z,y) f_n(y) dz dy, \ x \in V.$$

Zoran Vondraček (University of Zagreb)

< 🗗 🕨

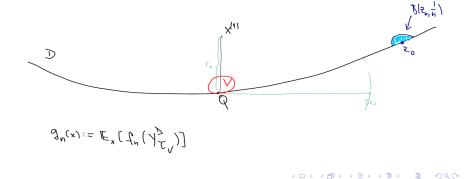
Choose a point $z_0 \in \partial D \setminus \overline{D \cap B(Q, 2r_0)}$ with $|z_0 - Q| \leq 1$. For $n \in \mathbb{N}$ large enough so that $B(z_0, 1/n)$ does not intersect $B(Q, 2r_0)$, we define (for $\gamma < 1/2$; the case $\gamma = 1/2$ is similar),

$$f_n(y) := \delta_D(y)^{-eta} rac{\mathbf{1}_{D \cap B(z_0, 1/n)}(y)}{|D \cap B(z_0, 1/n)|},$$

and

$$g_n(x) := \mathbb{E}_x[f_n(Y^D_{\tau_V})] = \int_{D \setminus D(2,2)} \int_V G_V^{Y^D}(x,z) J^{Y^D}(z,y) f_n(y) dz dy, \ x \in V.$$

Here $V = V_Q(2^{-2}\kappa_0 r_0)$ is a small $C^{1,1}$ set near Q.



Lemma: There exists C > 0 such that

$$\liminf_{n\to\infty} g_n(x) \ge C\delta_D(x)^\beta \log(r_0/\delta_D(x))$$

for all $x = x^{(s)} = (0, s)$ in CS with s small enough.

Image: A match a ma

Lemma: There exists C > 0 such that $\liminf_{n \to \infty} g_n(x) \ge C \delta_D(x)^\beta \log(r_0/\delta_D(x))$ for all $x = x^{(s)} = (\widetilde{0}, s)$ in *CS* with *s* small enough.

One can also show that for large n and all $y \in D \cap B(Q, 2^{-7}\kappa_0 r_0)$,

$$g_n(x) \leq c(r_0)^{2\beta(rac{1}{2}-\gamma)} \delta_D(y)^{2\beta\gamma}$$

Lemma: There exists C > 0 such that $\liminf_{n \to \infty} g_n(x) \ge C \delta_D(x)^\beta \log(r_0/\delta_D(x))$ for all $x = x^{(s)} = (\widetilde{0}, s)$ in CS with s small enough.

One can also show that for large n and all $y \in D \cap B(Q, 2^{-7}\kappa_0 r_0)$,

$$g_n(x) \leq c(r_0)^{2\beta(\frac{1}{2}-\gamma)}\delta_D(y)^{2\beta\gamma}$$
,

so that g_n are harmonic in $D \cap B(Q, 2^{-7}\kappa_0 r_0)$ and vanish continuously on $\partial D \cap B(Q, 2^{-7}\kappa_0 r_0)$.

Therefore (by the assumption that BHP holds)

$$\frac{g_n(y)}{g_n(w)} \le C \frac{\delta_D(y)^\beta}{\delta_D(w)^\beta} \quad \text{for all } y \in D \cap B(Q, 2^{-8}\kappa_0 r_0)$$

where $w = (\tilde{0}, 2^{-9}\kappa_0 r_0)$ and $C = C(2^{-7}\kappa_0 r_0)$.

Therefore (by the assumption that BHP holds)

$$\frac{g_n(y)}{g_n(w)} \leq C \frac{\delta_D(y)^\beta}{\delta_D(w)^\beta} \quad \text{for all } y \in D \cap B(Q, 2^{-8}\kappa_0 r_0)$$

where $w = (\tilde{0}, 2^{-9}\kappa_0 r_0)$ and $C = C(2^{-7}\kappa_0 r_0)$.

By the upper estimate of g_n it follows that

$$\limsup_{n\to\infty} g_n(y) \leq C \limsup_{n\to\infty} g_n(w) \frac{\delta_D(y)^{\beta}}{\delta_D(w)^{\beta}} \leq c \delta_D(y)^{\beta}.$$

Therefore (by the assumption that BHP holds)

$$\frac{g_n(y)}{g_n(w)} \leq C \frac{\delta_D(y)^\beta}{\delta_D(w)^\beta} \quad \text{for all } y \in D \cap B(Q, 2^{-8}\kappa_0 r_0)$$

where $w = (\tilde{0}, 2^{-9}\kappa_0 r_0)$ and $C = C(2^{-7}\kappa_0 r_0)$.

By the upper estimate of g_n it follows that

$$\limsup_{n\to\infty} g_n(y) \leq C \limsup_{n\to\infty} g_n(w) \frac{\delta_D(y)^{\beta}}{\delta_D(w)^{\beta}} \leq c \delta_D(y)^{\beta}.$$

By Lemma, for $y = x = x^{(s)}$, the left-hand side above is bounded from below by $C\delta_D(x)^\beta \log(r_0/\delta_D(x))$, yielding

$$\log(r_0/\delta_D(x)) \leq \frac{c}{C},$$

which is a contradiction.